Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots

Identifieur interne : 00FC24 ( Main/Repository ); précédent : 00FC23; suivant : 00FC25

Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots

Auteurs : RBID : Pascal:01-0459750

Descripteurs français

English descriptors

Abstract

Subpicosecond time-resolved photoluminescence upconversion is used to measure the 12 K first-excited-state dynamics in large InGaAs/GaAs self-assembled quantum dots designed for 1.3 μm diode lasers. A comparison with the ground-state dynamics suggests that energy relaxation occurs in a cascade through the multiple discrete levels with an average interlevel relaxation time of ∼250 fs. Excited-state emission is observed from two distinct populations. Due to the ultrafast relaxation from the excited state to the ground state in dots containing only a single exciton, the excited-state emission is dominated by the fraction of dots that capture more than one electron-hole pair. In this case, state filling in the ground state blocks the ultrafast relaxation channel, thereby enhancing the excited-state emission. While state filling and a random capture process dictate the primary features of the excited-state emission, at low excitation levels we find that the rise time of emission from the excited state is influenced by the much denser population of singly occupied dots. © 2001 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0459750

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots</title>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Boggess, Thomas F" uniqKey="Boggess T">Thomas F. Boggess</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gundogdu, K" uniqKey="Gundogdu K">K. Gundogdu</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Flatte, Michael E" uniqKey="Flatte M">Michael E. Flatte</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Deppe, D G" uniqKey="Deppe D">D. G. Deppe</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78712-1084</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin</wicri:cityArea>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cao, C" uniqKey="Cao C">C. Cao</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78712-1084</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin</wicri:cityArea>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Shchekin, O B" uniqKey="Shchekin O">O. B. Shchekin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78712-1084</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin</wicri:cityArea>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0459750</idno>
<date when="2001-11-12">2001-11-12</date>
<idno type="stanalyst">PASCAL 01-0459750 AIP</idno>
<idno type="RBID">Pascal:01-0459750</idno>
<idno type="wicri:Area/Main/Corpus">010493</idno>
<idno type="wicri:Area/Main/Repository">00FC24</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier relaxation time</term>
<term>Electron traps</term>
<term>Excited states</term>
<term>Excitons</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Hole traps</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Photoluminescence</term>
<term>Semiconductor quantum dots</term>
<term>Time resolved spectra</term>
<term>self-assembly</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7321L</term>
<term>8105E</term>
<term>7867H</term>
<term>8107T</term>
<term>7155E</term>
<term>7855C</term>
<term>7363K</term>
<term>7847</term>
<term>7220J</term>
<term>7320M</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Photoluminescence</term>
<term>Spectre résolution temporelle</term>
<term>Piège électron</term>
<term>Piège trou</term>
<term>Etat excité</term>
<term>Exciton</term>
<term>Temps relaxation porteur charge</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Subpicosecond time-resolved photoluminescence upconversion is used to measure the 12 K first-excited-state dynamics in large InGaAs/GaAs self-assembled quantum dots designed for 1.3 μm diode lasers. A comparison with the ground-state dynamics suggests that energy relaxation occurs in a cascade through the multiple discrete levels with an average interlevel relaxation time of ∼250 fs. Excited-state emission is observed from two distinct populations. Due to the ultrafast relaxation from the excited state to the ground state in dots containing only a single exciton, the excited-state emission is dominated by the fraction of dots that capture more than one electron-hole pair. In this case, state filling in the ground state blocks the ultrafast relaxation channel, thereby enhancing the excited-state emission. While state filling and a random capture process dictate the primary features of the excited-state emission, at low excitation levels we find that the rise time of emission from the excited state is influenced by the much denser population of singly occupied dots. © 2001 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>79</s2>
</fA05>
<fA06>
<s2>20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHANG (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOGGESS (Thomas F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GUNDOGDU (K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FLATTE (Michael E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DEPPE (D. G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CAO (C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SHCHEKIN (O. B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Optical Science and Technology Center, Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78712-1084</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>3320-3322</s1>
</fA20>
<fA21>
<s1>2001-11-12</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0459750</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Subpicosecond time-resolved photoluminescence upconversion is used to measure the 12 K first-excited-state dynamics in large InGaAs/GaAs self-assembled quantum dots designed for 1.3 μm diode lasers. A comparison with the ground-state dynamics suggests that energy relaxation occurs in a cascade through the multiple discrete levels with an average interlevel relaxation time of ∼250 fs. Excited-state emission is observed from two distinct populations. Due to the ultrafast relaxation from the excited state to the ground state in dots containing only a single exciton, the excited-state emission is dominated by the fraction of dots that capture more than one electron-hole pair. In this case, state filling in the ground state blocks the ultrafast relaxation channel, thereby enhancing the excited-state emission. While state filling and a random capture process dictate the primary features of the excited-state emission, at low excitation levels we find that the rise time of emission from the excited state is influenced by the much denser population of singly occupied dots. © 2001 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A05Y</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B70H47</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B70B20J</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7321L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7867H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8107T</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7363K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>7847</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>7220J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>7320M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>self-assembly</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Spectre résolution temporelle</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Time resolved spectra</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Piège électron</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electron traps</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Piège trou</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Hole traps</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Etat excité</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Excited states</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Temps relaxation porteur charge</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Carrier relaxation time</s0>
</fC03>
<fN21>
<s1>323</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0146M000137</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00FC24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00FC24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0459750
   |texte=   Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024